Reinterpretation of the conjectured Jahn-Teller switch of MnF$_6^{3-}$ complexes in Na$_3$MnF$_6$ under pressure

I. Sánchez-Movellán1, D. Carrasco-Busturia2, J. M. García-Lastra2, P. García-Fernández1, J. A. Aramburu1, M. Moreno1

1Departament CITIMAC, University of Cantabria, Santander, Spain
2Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark

Numerous papers have been published in the recent literature invoking the existence of Jahn-Teller switching under hydrostatic pressure in solids containing complexes of the transition metal cations Cu$^{2+}$ (d9 configuration) or Mn$^{3+}$ (d4). A significant example is the monoclinic compound Na$_3$MnF$_6$ (space group P2$_1$/n) which, at ambient pressure, contains MnF$_6^{3-}$ complexes where the long axis corresponds to the the Mn$^{3+}$-F$_3^-$ direction, close to the crystal c axis, while at 2.79 GPa the long axis is in the Mn$^{3+}$-F$_2^-$ direction more or less along b axis [1].

In this work we use symmetry arguments and first-principles calculations [2] in order to show that the switch in the elongation axis of the MnF$_6^{3-}$ complexes is not related to the Jahn-Teller effect, but rather is due to the anisotropic response of the low symmetry lattice to hydrostatic pressure, strongly reducing the c-axis while the a and b axes change very little. This fact is shown to force a change of the HOMO wavefunction favoring that, at P = 2.79 G Pa, the long axis becomes the Mn$^{3+}$-F$_2^-$ direction, not far from crystal b axis, after the subsequent relaxation process.

The origin of the different d-d transitions observed for Na$_3$MnF$_6$ and CrF$_2$ at ambient pressure is also discussed together with changes induced by pressure in Na$_3$MnF$_6$. The present work opens a window for understanding the pressure effects upon low symmetry insulating compounds containing d4 or d9 ions.