Reinterpretation of the conjectured Jahn-Teller switch of MnF₆³⁻ complexes in Na₃MnF₆ under pressure

I. Sánchez-Movellán¹, D. Carrasco-Busturia², J. M. García-Lastra², P. García-Fernández¹, J. A. Aramburu¹, M. Moreno¹

¹Departament CITIMAC, University of Cantabria, Santander, Spain ²Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark

Numerous papers have been published in the recent literature invoking the existence of Jahn-Teller switching under hydrostatic pressure in solids containing complexes of the transition metal cations Cu^{2+} (d⁹ configuration) or Mn^{3+} (d⁴). A significant example is the monoclinic compound Na₃MnF₆ (space group P2₁/n) which, at ambient pressure, contains MnF₆³⁻ complexes where the long axis corresponds to the the Mn³⁺-F₃⁻ direction, close to the crystal *c* axis, while at 2.79 GPa the long axis is in the Mn³⁺-F₂⁻ direction more or less along *b* axis [1].

In this work we use symmetry arguments and first-principles calculations [2] in order to show that the switch in the elongation axis of the MnF_6^{3-} complexes is not related to the Jahn-Teller effect, but rather is due to the the anisotropic response of the low symmetry lattice to hydrostatic pressure, strongly reducing the **c**-axis while the **a** and **b** axes change very little. This fact is shown to force a change of the HOMO wavefunction favoring that, at P = 2.79 G Pa, the long axis becomes the $Mn^{3+}-F_2^{-}$ direction, not far from crystal **b** axis, after the subsequent relaxation process.

The origin of the different *d*-*d* transitions observed for Na_3MnF_6 and CrF_2 at ambient pressure is also discussed together with changes induced by pressure in Na_3MnF_6 . The present work opens a window for understanding the pressure effects upon low symmetry insulating compounds containing d⁴ or d⁹ ions.

S. Carlson, Y. Xu, U. Halenius, R. Norrestam, *Inorg. Chem.* **1998**, 37, 1486-1492.
I. Sánchez-Movellán, D. Carrasco-Busturia, J. M. García-Lastra, P. García-Fernández, J. A.

Aramburu, M. Moreno, Chem. Eur. J. 2022, 28, e202200948 (1-10)