## Pseudo Jahn-Teller Origin of the Double Proton Transfer Energy Barrier in Formic Acid Dimer

Iolanta Balan<sup>1</sup>, Natalia Gorinchoy<sup>1</sup>, Victor Polinger<sup>2</sup>, Isaac B. Bersuker<sup>3</sup>

<sup>1</sup>Moldova State University, Institute of Chemistry, Chişinău, Republic of Moldova <sup>2</sup>Department of Chemistry, The University of Washington, Seattle, USA <sup>3</sup>The University of Texas at Austin, USA

The results of *ab initio* calculations of the adiabatic potential energy surfaces for the double-proton transfer in the formic acid dimer (FA<sub>2</sub>) are rationalized in terms of the pseudo Jahn-Teller effect (PJTE).

The planar nuclear configuration of  $D_{2h}$  symmetry of this dimer corresponds to the transition state (TS) for the transfer of two central hydrogen atoms at equal distance between the two molecules of the formic acid dimer. In this configuration, the system is in a singlet ground electronic state  ${}^{1}A_{g}$  with imaginary frequency of 1770.38 cm<sup>-1</sup> of the  $b_{1g}$  mode (Fig. 1*a*). This means the  $D_{2h}$  configuration of the dimer FA<sub>2</sub> is Jahn-Teller unstable with respect to the symmetry-adapted displacement  $b_{1g}$  of the central hydrogen atoms (Fig. 1*b*). It is due to the relatively strong vibronic coupling of the ground-state  ${}^{1}A_{g}$  term to the low-lying excited term  ${}^{1}B_{1g}$  to the symmetry-breaking  $b_{1g}$  mode resulting in the PJTE (A<sub>g</sub>+B<sub>1g</sub>) $\otimes b_{1g}$ .



Fig. 1. (*a*) Reaction coordinate  $(b_{1g})$  in formic acid dimer; (*b*) cross-sections of the APESes for the ground  ${}^{1}A_{g}$  and excited  ${}^{1}B_{1g}$  states of FA<sub>2</sub> along the  $b_{1g}$  distortion

The PJTE parameters were evaluated by fitting the ab initio calculated adiabatic potential energy curves to the analytic expression for the energy obtained in the theory of the PJTE [1]:

$$\varepsilon_{1,2} = \frac{1}{4} (K_{01} + K_{02})Q^2 + \frac{\Delta}{2} \mp \frac{1}{2} \sqrt{\left[\frac{1}{2} (K_{01} - K_{02})Q^2 - \Delta\right]^2 + 4F^2 Q^2}$$

[1] Isaac B. Bersuker; Chemical Reviews, 121, 1463–1512 (2021).