Anti-relativistic Jahn-Teller polaron in a spin-orbit entangled oxide

Lorenzo Celiberti1,2, Dario Fiore Mosca1, Giuseppe Allodi3, Leonid V. Pourovskii4,5, Anna Tassetti2, Paola Caterina Forino2, Roberto De Renzi5, Vesna Mitrović6, Erick Garcia6, Rong Cong6, Patrick Woodward7, Samuele Sanna2, and Cesare Franchini1,2

1University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria
2Department of Physics and Astronomy 'Augusto Righi', Alma Mater Studiorum - Università di Bologna, Bologna, 40127 Italy
3Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
4Centre de Physique Théorique, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
5Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
6Department of Physics, Brown University, Providence, Rhode Island 02912, USA
7Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA

Polarons are quasiparticles originating from strong electron-phonon interaction in polarizable materials. In Jahn-Teller (JT) active media, distortions arising from symmetry braking might favour or encumber polaron formation and thereby we speak of JT or anti-JT polarons [1]. So far, these quasiparticles have been observed in doped 3d transition metal oxides, as La$_{1-x}$Sr$_x$MnO$_3$ and superconductive La$_{2-x}$Sr$_x$CuO$_4$ [1, 2]. However, in heavier 5d transition metal oxides, the more delocalised nature of the orbitals is likely to hinder polaron formation and spin-orbit (SOC) effects become important. Their repercussions on the $t \otimes E$ and $t \otimes T$ adiabatic energy surfaces of d electron impurities have been recently studied using model Hamiltonian approaches [3, 4]. Using ab initio calculations and magnetic measurements we show that polarons form in the 5d spin-orbit coupled double perovskite Ba$_2$NaOsO$_6$. In particular, we observe that the quasiparticle stability strongly depends on the competing actions of SOC and a local tetragonal JT distortion. These unique vibro-spin-orbital properties identify a new type of quasiparticle in Ba$_2$NaOsO$_6$ that we name anti-relativistic Jahn-Teller polaron.