Manifestation of the Jahn-Teller effect in Nature's Water Oxidase

Maria Drosou,¹ Georgia Zahariou,² Dimitrios A. Pantazis¹

¹Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany ²Institute of Nanoscience & Nanotechnology, NCSR "Demokritos", Athens, 15310 Greece

The active site of the oxygen-evolving complex (OEC) of photosystem II (PSII) is an oxo-bridged Mn_4CaO_5 cluster that stores four oxidizing equivalents required to oxidize water into dioxygen by cycling through five oxidation states known as the S_0-S_4 states. Here we investigate the interplay between Jahn–Teller effects and valence isomerism, unravelling its role in efficient catalytic S-state progression. We employ quantum chemistry methods to show that the Mn_4CaO_5 cluster in the resting (dark-stable) S_1 state adopts orientational pseudo-Jahn–Teller isomeric forms that differ in the direction of the "dangler" Mn(III) ion pseudo-Jahn–Teller axis. The proposed structures are consistent with the available structural data and provide a simple and direct interpretation of observed S_1 state EPR signals [1]. We also discuss the functional role of this structural isomerism in the emergence of valence isomerism in the S_2 state [2]. Understanding nature's unique wateroxidizing enzyme might provide invaluable guidelines for the development of artificial water-splitting catalysts.

Figure caption: Proposed S₁ state structures with the corresponding observed EPR signals.

[1] M. Drosou; G. Zahariou; D. A. Pantazis; *Angew. Chem. Int. Ed.* 60, 13493 (2021).
[2] D. A. Pantazis; W. Ames; N. Cox, W. Lubitz; F. Neese; *Angew. Chem. Int. Ed.* 51, 9935 (2012).