Beyond Born-Oppenheimer Constructed Diabatic Potential Energy Surfaces for HeH$_2^+$

Koushik Naskar1, Satyam Ravi1,2, Satrajit Adhikari1,*, Michael Baer3 and Narayanasami Sathyamurthy4

1School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
2School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, 466114, India
3The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Israel
4Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, India

*Email: pcsa@iacs.res.in

First principles based beyond Born-Oppenheimer theory [1] has been employed to construct multi-state global Potential-Energy Surfaces (PESs) for the HeH$_2^+$ [2-7] system by explicitly incorporating the Nonadiabatic Coupling Terms (NACTs). Adiabatic PESs and NACTs for the lowest four electronic states ($1^2A'$, $2^2A'$, $3^2A'$ and $4^2A'$) are evaluated as functions of hyperangles for a grid of fixed values of the hyperradius in hyperspherical coordinates. [7] Conical intersection between different states are validated by integrating the NACTs along appropriately chosen contours. Subsequently, adiabatic-to-diabatic (ADT) [8] transformation angles are determined by solving the ADT equations to construct the diabatic potential matrix for the HeH$_2^+$ system [7] which are smooth, single-valued, continuous, and symmetric and are suitable for performing accurate scattering calculations for the titled system.

References: