Femtosecond Symmetry Breaking and Coherent Relaxation of Methane Cations via X-ray Spectroscopy

Enrico Ridente^{1,2}, Diptarka Hait^{1, 2}, Eric A. Haugen^{1, 2}, Andrew D. Ross^{1, 2}, Daniel M. Neumark^{1,2}, Martin Head-Gordon^{1, 2}, and Stephen R. Leone^{1, 2, 3}

¹Department of Chemistry, University of California, Berkeley, CA, 94720, USA ²Chemical Sciences Division, LBNL, Berkeley, CA 94720, USA ³Department of Physics, University of California, Berkeley, CA, 94720, USA

Methane is the smallest molecule of the T_d symmetry group and its cation (CH₄⁺) represents the simplest case of the Jahn-Teller (JT) $T_2 \otimes (e + t_2)$ problem. Here, we present a comprehensive picture of how JT distortions unfold in CH₄⁺ by ionizing CH₄ using a 4 fs 800 nm pulse and probing the 1s(C) \rightarrow singly occupied molecular orbital (SOMO) via X-ray transient absorption spectroscopy. We measure the shift from T_d to C_{2v} to occur within 10±2 fs, followed by a damped coherent vibrational oscillation with a lifetime of 58±13 fs (A). X-ray absorption spectra calculated by OO-DFT (**B**) corroborated the experimental findings. Similar agreement between experimental measurements and theoretical calculations was obtained for CD₄⁺. The dynamics could be assigned to the asymmetric scissoring motion about the smallest H-C-H angle, which lead to a change in the character of the singly occupied molecular of JT-induced coherent dynamics and relaxation pathways.

Figure caption: (A) XTAS measurements. The solid line indicates the first central moment (CM1) while the dotted line JT timescale and equilibrium energy. (B) OO-DFT calculations. (C) Change in SOMO associated with the scissoring motion of the molecule.