Reinterpretation of the conjectured Jahn-Teller switch of MnF₆³⁻ complexes in Na₃MnF₆ under pressure

Antonio Aramburu¹

I. Sánchez-Movellán¹, D. Carrasco-Busturia², J. M. García-Lastra², P. Garcia-Fernández¹, M. Moreno¹

¹Depart. de Ciencias de la Tierra y Física de la Materia Condensada, Facultad de Ciencias, University of Cantabria, Santander, Spain

²Center for Atomic-Scale Materials Design, Technical University of Denmark, Kongens Lyngby, Denmark

Jahn-Teller swicht under pressure

- Many works invoke the existence of a Jahn-Teller switch under hydrostatic pressure in solids containing complexes of transition metal cations as Cu²⁺ (d⁹ configuration) or Mn³⁺ (d⁴)
- □ Examples: Na₃MnF₆, (NH₄)₂Cu(H₂O)₆(SO₄)₂, Cs₂Zn(ZrF₆)₂.6H₂O:Cu²⁺, CuF₂(H₂O)₂(pyz) (pyz = pyrazine), CuWO₄, etc.
- □ Conjetured idea: $Na_3MnF_6 \rightarrow MnF_6^{3-}$ complexes (d⁴, S = 2) tetragonally elongated (D_{4h}) by Jahn-Teller effect

Na₃MnF₆ monoclinic P2₁/n (standard P2₁/c)

□ Experimental data: Carlsson et al., Inorg. Chem. 37, 1486 (1988)
□ MnF₆³⁻ complexes: no D_{4h} elongated but triclinic C_i, no C₄ axis
□ Switch of the long Mn-F bond under P = 2.79 GPa: z → y

Goals and Tools

3 goals

- 1. To show that there is not a Jahn-Teller effect in MnF_6^{3-} complexes of Na_3MnF_6 (the same for other non-cubic crystals)
- 2. To show that the long axis switch is due to the **anisotropy** of the crystal
- 3. To assign the 3 observed peaks in the optical d-d spectrum

Basic tools

- First-principles DFT periodic calculations: Crystal code, hybrid XC functionals
- First-principles DFT calculations on a MnF₆³⁻ complex with embbeding: ADF code, hybrid XC functionals
- Symmetry

Na₃MnF₆: calculated geometry

Optimized geometries for P = 0, 2.79 GPa

□ Lattice parameters (a, b, c) and Mn-F distances in Å, β angle in degrees

		а	b	С	β	R _x	R _y	R _z
P = 0	Experim.	5.471	5.683	8.073	88.9	1.862	1.897	2.018
	Calculated	5.460	5.646	8.137	88.5	1.864	1.880	2.069
P = 2.79	Experim.	5.386	5.690	7.783	89.3	1.790	1.971	1.891
	Calculated	5.381	5.720	7.713	88.4	1.861	2.041	1.866
lattice variation		-0.10	+0.01	-0.29 Å	very anisotropic			
		$R_{x}\downarrow$	R_{v} \uparrow	$R_{z}\!\downarrow$		C C		

Good agreement with experimental geometries
Calculations reproduce the switch under P

Na₃MnF₆: calculated spin density

Calculated spin density (up - down) of a MnF_6^{3-} complex

P = 0HOMO: dominant $3z^2-r^2$ character

Na₃MnF₆: no Jahn-Teller effect

- Jahn-Teller effect is very restrictive: it requieres a high symmetry parent phase where MnF₆³⁻ complexes had orbital degeneration
- Parent phase of Na₃MnF₆: killing any vibronic coupling
- □ Substitute all Mn^{3+} (d⁴ open shell) \rightarrow Fe³⁺ (d⁵, semiclosed shell), same ionic radii, 0.785 Å
- □ Geometry optimization of Na_3FeF_6 fixing P2₁/n group \Rightarrow equal or greater symmetry (no lower)
- □ Na₃FeF₆ parent phase **no Jahn-Teller effect**
 - Same P2₁/n symmetry of Na₃MnF₆
 - FeF₆³⁻ complexes: same triclinic C_i symmetry
 - Complexes elongated along y
 - Gap (x²-z²) (3y²-r²) of 0.06 eV: no degeneration

 $Na_3FeF_6P2_1/c$

One MnF₆³⁻ complex in Na₃FeF₆

step	system	calculation	Complex	R _x (Å)	R _y (Å)	R _z (Å)	Δ (eV)
(1)	Na ₃ FeF ₆	full optimization	FeF ₆ ³⁻	1.931	1.945	1.943	0.005
(2)	Na ₃ FeF ₆ :Mn ³⁺	Na ₃ FeF ₆ param. and distances	MnF ₆ ³⁻	1.931	1.945	1.943	0.06
(3)	Na ₃ FeF ₆ :Mn ³⁺	Na ₃ FeF ₆ param., optimize distances	MnF ₆ ³⁻	1.856	2.045	1.895	0.76
(4)	Na ₃ FeF ₆ :Mn ³⁺	increase c 1.1% optimize distances	MnF ₆ ³⁻	1.866	1.892	2.049	

spliting Δ of e_q in a C_i complex in Na₃FeF₆

Pseudo-Jahn-Teller effect coupling HOMO-LUMO through a_q modes

MnF_6^{3-} : d-d transitions, P = 0, 2.79 GPa

- Calculated energies (in eV) for a C_i MnF₆³⁻ complex in Na₃MnF₆ at P = 0, 2.79 GPa
- Experimental data: Carlsson et al., Inorg. Chem. 37, 1486 (1988)

More information

 I. Sánchez-Movellán, D. Carrasco-Busturia, J. M. García-Lastra, J. A. Aramburu, P. Garcia-Fernández, M. Moreno, *Chem. Eur. J.* 28, e202200948 (2022)