Pseudo-Jahn-Teller Effect in Deprotonated Dimethyl Amino Phenyl Substituted Phthalocyanine

Martin BREZA

Department of Physical Chemistry, Slovak Technical University, Radlinského 9, SK-81237 Bratislava, Slovakia

e-mail: martin.breza@stuba.sk

INTRODUCTION

Phtalocyanines (PcH_2) are used as photosensitizers, dyes, pigments, fluorescent and electroactive molecules for biomedical and industrial applications.

Breloy *et al.* [1] synthesized a novel dimethyl amino phenyl substituted phthalocyanine (dmaphPcH₂) and its Ag(II) complex ([dmaphPcAg]⁰, see Fig. 1) used as a visible light-absorbing photoinitiator for free-radical and cationic polymerizations.

RESULTS

Table 2. Representations Γ_2 and excitation energies E_{exc} of low excited electron states in optimized [dmaphPc]^q geometries of various symmetry groups.

 $\frac{1[\text{dmaphPc}]^{2-}}{D_{4h}}$

Figure 1. Structure of [dmaphPcAg]⁰ [1]

Irradiation of the [dmaphPcAg]⁰ solution led to the reduction of Ag(II) to Ag(I) and simultaneously generated the nitrogencentered radical. In the next step, Ag nanoparticles and aromatic carbon-centered radicals were formed. The proposed photoinitiation mechanisms under light irradiation suppose the existence of [dmaphPc]⁰, Ag⁰ and [dmaphPcAg]^q entities, q = -1, 0 or +1. DFT calculations indicate a $D_4 \rightarrow D_2$ symmetry descent due to the Jahn-Teller effect in Ag complexes.

The intermediate deprotonated $[dmaphPc]^q$ species, $q = -2 \rightarrow 0$, are formed during the above redox processes. Our study deals with their DFT study and group-theoretical analysis from the point of view of the Pseudo-Jahn-Teller (PJT) effect in terms of the epikernel principle method [2, 3] with the aim to shed more light on the processes in the above systems. Our study is restricted to the symmetry descent from the highest possible D_{4h} structures to the stable structures of its maximal symmetry subgroup due to a great number of possible conformations of dimethyl amino phenyl groups.

Table 1. Ground state Γ_1 , DFT energy E_{DFT} , representations Λ_{im} , corresponding wavenumbers v_{im} , kernels and epikernels of imaginary vibrations in optimized [dmaphPc]^q geometries of various groups G.

¹[dmaphPc]²⁻

G	Γ_0	E _{DFT} [Hartree]	E _{JT} [eV]	$\Lambda_{\rm im}$	v _{im} [cm⁻ ¹]	$K(G, \Lambda_{im})$	$E(G, \Lambda_{im})$
D _{4h}	$^{1}A_{1g}$	-4587.70938	0.000	b_{1u}	-44	$D_{2d}(C_2')$	
				eg	-43	C ₁	$C_{2h}(C_2'), C_{2h}(C_2'')$
				a _{1u}	-42	D_4	
				a _{2u}	-25	C_{4v}	
				b_{2u}	-24 (3×)	$D_{2d}(C_2")$	

			-
2	E _{exc} [eV]	Γ_2	$E_{exc} [eV]$
		1^1E	1.880
		$2^{1}E$	2.155
		$1^{1}B_{1}$	2.160
		$1^{1}A_{1}$	2.234
		3 ¹ E	2.242
		$2^{1}B_{1}$	2.274

²[dmaphPc]⁻

	D _{4h}	D_4		D _{2d}			D ₂
Γ_2	$E_{exc} [eV]$	Γ_2	$E_{exc} [eV]$	Γ_2	E _{exc} [eV]	Γ_2	E _{exc}
							[eV]
		$1^{2}B_{1}$	0.944	$1^{2}B_{2}$	0.927	$1^{2}B_{1}$	0.917
		$1^{2}A_{2}$	1.232	1 ² E	1.580	$1^{2}B_{3}$	1.548
		$1^2 E$	1.670	2 ² E	1.853	$1^{2}B_{2}$	1.550
		$1^{2}B_{2}$	1.693	$2^{2}B_{2}$	1.917	$2^{2}B_{3}^{-}$	1.797
		$2^2 E$	1.825	$3^2 E$	2.168	3^2B_2	1.803
		3 ² E	1.848	$1^{2}A_{1}$	2.204	$2^{2}B_{1}^{2}$	1.895
						1	

¹[dmaphPc]⁰

	D _{4h}	D ₄		D _{2d}		D ₂	
Γ_2	$E_{exc} [eV]$	Γ_2	$E_{exc} [eV]$	Γ_2	$E_{exc} [eV]$	Γ_2	$E_{exc} [eV]$
		$1^{1}B_{1}$	0.847	$1^{1}A_{2}$	1.206	$1^{1}B_{1}$	1.184
		$1^{1}B_{2}$	0.929	$1^{1}B_{2}$	1.662	$1^{1}B_{2}$	1.483
		1^1E	0.940	1^1E	1.663	$1^{1}B_{3}$	1.485
		$1^{1}A_{2}$	0.944	$1^{1}A_{1}$	1.684	1^1A	1.494
		$2^{1}A_{2}$	1.109	2 ¹ E	1.726	$2^{1}B_{1}$	1.549
		$2^{1}E$	1.392	$1^{1}B_{1}$	1.739	$2^{1}B_{3}$	1.902

	C			$\overline{\mathbf{C}}$		C	
		$-\frac{C_{4v}}{D}$		$-\frac{\nabla_{2v}}{\Gamma}$		$\overline{\mathbf{C}_2}$	
	I ₂	$E_{exc} [eV]$	1_2	E _{exc} [ev]	I 2	$E_{exc} [eV]$	
	$1^{1}B_{1}$	0.813	$1^{1}A_{2}$	1.217	$1^{1}A$	1.625	
C ₂ ")	$1^{1}A_{2}$	1.049	$1^{1}B_{2}$	1.659	$1^1\mathbf{B}$	1.730	
	$1^{1}B_{2}$	1.089	$1^{1}A_{1}$	1.662	$2^{1}B$	1.736	
	$1^{1}E$	1.092	$1^{1}B_{1}$	1.664	$2^{1}A$	1.743	
	$1^{1}A_{1}$	1.125	$2^{1}A_{1}$	1.676	$3^{1}A$	1.857	
	2 ¹ E	1.134	$2^{1}B_{1}$	1.722	$3^{1}B$	2.142	

METHOD

Standard B3LYP [4] geometry optimization with Grimme's GD3 dispersion correction [5] of $[dmaphPc]^q$, q = -2 to 0, in (singlet or \overline{D} doublet) ground spin states using the cc-pVDZ basis sets [6] was performed within D_{4h} and lower symmetry groups. The optimized structures were checked on imaginary vibrations by vibrational analysis. The excited-state energies with the corresponding $\frac{\overline{D}}{\overline{D}}$ electron transitions were evaluated using the time-dependent DFT method [7]. All calculations were performed using the Gaussian16 [8] program package.

THEORETICAL BACKGROUND

The epikernel-principle method for pseudodegenerate states [2, 3] is based on the Jahn-Teller active distortion coordinate Q of Λ representation for pseudodegenerate electron states Ψ_1 and Ψ_2 of Γ_1 and Γ_2 representations, respectively, within the parent symmetry group G. Λ is the non-totally symmetric part of the symmetrized direct product $[\Gamma \otimes \Gamma]$ which corresponds to a nonvanishing value of $\langle \Psi_1 | \frac{\partial \hat{H}}{\partial Q} | \Psi_2 \rangle$ integrals where \hat{H} denotes

$D_4 {}^1A_1 {}^-4587.73758 {}^0.767 {}^-$

²[dmaphPc]⁻

Ţ	Γ_0	E _{DFT} [Hartree]	E _{JT} [eV]	$\Lambda_{\rm im}$	ν _{im} [cm ⁻¹]	$K(G, \Lambda_{im})$	$E(G, \Lambda_{im})$
) _{4h}	$^{2}A_{1u}$	-4587.70651	0.000	b_{1u}	-42	$D_{2d}(C_2')$	
				eg	-41	C _i	$C_{2h}(C_2'), C_{2h}(C_2'')$
				a _{1u}	-40	D_4	
				b_{2u}	-22(4×), -4	$D_{2d}(C_2")$	
) ₄	${}^{2}A_{1}$	-4587.73130	0.025	b ₂	-4	$D_2(C_2")$	
) _{2d}	${}^{2}B_{1}$	-4587.71000	0.003	a ₂	-35	S ₄	
				e	-35	C ₁	$C_{2}(C_{2}'), C_{s}(\sigma_{d})$
				b_1	-34	D ₂	
) ₂	^{2}A	-4587.73311	0.027	-			

¹[dmaphPc]⁰

G	Γ_0	E _{DFT} [Hartree]	E _{JT} [eV]	Λ_{im}	ν _{im} [cm ⁻¹]	$K(G, \Lambda_{im})$	$E(G, \Lambda_{im})$
D_{4h}	$^{1}A_{1\sigma}$	-4587.60177	0.000	$a_{2\sigma}$	-389	C _{4h}	
III	18			e_{σ}^{2s}	-47, -30, -23	Ci	$C_{2h}(C_2), C_{2h}(C_2)$
				b_{1u}	-45	$D_{2d}(C_2')$	
				a_{1u}	-43	D_4	
				b_{2u}	-33, -24	$D_{2d}(C_2")$	
				a _{2u}	-26	C_{4v}	
D ₄	${}^{1}A_{1}$	-4587.62991	0.766	a ₂	-196	C ₄	
				e	-25	C_1	$C_2(C_2'), C_2(C_2'')$
				b_2	-22	$D_2(C_2")$	
D _{2d}	${}^{1}A_{1}$	-4587.62273	0.570	a ₂	-190, -36	S_4	
				e	-35	C_1	C_2, C_s
				b_1	-35	D ₂	
D ₂	^{1}A	-4587.64720	1.236	b_1	-180	C ₂	
C_{4v}	${}^{1}A_{1}$	-4587.60400	0.061	a_2	-331	C_4	
				e	-39, -27	C_1	$C_s(\sigma_v), C_s(\sigma_d)$
				b_1	-36	$C_{2v}(\sigma_v)$	
				a_2	-35	C_4	
				b ₂	-28	$C_{2v}(\sigma_d)$	
C_{2v}	${}^{1}A_{1}$	-4587.62276	0.571	a_2	-190, -36, -35	C_2	
				b_1	-35	$C_s(\sigma_v)$	
				b_2	-35	$C_{s}(\sigma_{v}')$	
C ₂	^{1}A	-4587.64969	1.304	-		-	

CONCLUSIONS

PJT symmetry descent can proceed *via* various symmetry descent paths in multiple steps

PJT symmetry descent paths

(PJT interactions are in parentheses):

¹[dmaphPc]²⁻

 $--- D_{4h}(A_{1u}-a_{1u}) \rightarrow D_4$

²[dmaphPc]⁻

¹[dmaphPc]⁰

 $\begin{array}{ccc} & & D_{4h}(B_{1u} - b_{1u}) \to D_{2d}(E - e) \to C_{2} \\ & & D_{4h}(B_{1u} - b_{1u}) \to D_{2d}(B_{1} - b_{1}) \to D_{2}(B_{1} - b_{1}) \to C_{2} \\ & & D_{4h}(A_{1u} - a_{1u}) \to D_{4}(E - e) \to C_{2} \\ & & D_{4h}(A_{1u} - a_{1u}) \to D_{4}(B_{2} - b_{2}) \to D_{2}(B_{1} - b_{1}) \to C_{2} \\ & & D_{4h}(A_{2u} - a_{2u}) \to C_{4v}(B_{2} - b_{2}) \to C_{2v}(A_{2} - a_{2}) \to C_{2} \end{array}$

TD-DFT calculations of D_{4h} symmetry structures are in progress

Hamiltonian. According to the epikernel principle, the extrema of a JT energy surface correspond to the kernel K(G, Λ) or epikernel E(G, Λ) subgroups of the parent group G. Kernels contain symmetry operations that leave the Λ representation invariant, whereas epikernels leave invariant only some components of the degenerate Λ representation. The energy difference between the high-symmetry unstable and low-symmetry (stable) structures of the same compound is denoted as the Jahn-Teller stabilization energy E_{JT} .

ACKNOWLEDGEMENT

Science and Technology Assistance Agency of Slovak Republic (contract No. APVV-19-0087) and Slovak Grant Agency VEGA (contract No. 1/0139/20) are acknowledged for financial support.

REFERENCES:

L. Breloy et al.; *Polym. Chem.* 12, 1273 (2021).
A. Ceulemans, L.G. Vanquickenborne; *Struct. Bonding* 71, 25 (1989).
M. Breza; *Progr. Theor. Chem. Phys.* 23, 59 (2012).

4. A. D. Becke; J. Chem. Phys. 98, 5648 (1993).

5. S. Grimme et al.; J. Chem. Phys. 132, 154104 (2010).

—— 6. T. H. Dunning Jr.; J. Chem. Phys. **90**, 1007 (1989).

R. Bauernschmitt, R. Ahlrichs; *Chem. Phys. Lett.* 256, 454 (1996).

8. M. J. Frisch et al.; *Gaussian 16*, Revision B.01, Gaussian, Inc., Wallingford CT (2016)