# Jahn-Teller effect in $C_{60}$ monoanion and monocation

## **Zhishuo Huang**, $^{1,2}$ **Dan Liu**, $^{3,2}$

<sup>1</sup> Department of Chemistry, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore

<sup>2</sup> Theory of Nanomaterials Group, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

<sup>3</sup> Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, Shaanxi, China

### Introduction

Highly symmetric  $C_{60}$  exhibits complex Jahn-Teller (JT) dynamics characterized by orbital-vibration entanglement in various charged and excited states, thus thorough understanding of the JT effect of  $C_{60}$  anions is crucial. Negatively charged  $C_{60}$  has been one of the most investigated cases because it forms various molecular crystals. Although JT effect, including dynamic one, of  $C_{60}$  anions has been intensively investigated, it is only past



**Figure 1:** Structure (a)., energy level (e). of  $C_{60}$ , the Fermi level is set between LOMOs and HUMOs. The molecular orbitals corresponding to  $T_{1g}$ ,  $T_{1u}$  and  $H_u$  states are shown in (b). (c). and (d)., respectively.

adiabatic potential energy surface (APES) with respect to the reference structure is given by

$$U_{\min} = -E_a - E_{JT} = -\frac{V_a^2}{2\omega_a^2} - \frac{V_h^2}{2\omega_h^2},$$
(5)

with  $q_{a,0} = -\frac{V_a}{\omega_a^2}$ ,  $|\mathbf{q_{h,0}}| = \frac{V_h}{\omega_h^2}$ , where  $E_a$  and  $E_{JT}$  are the first and the second terms in the last expression in Eq. (5), respectively, and  $\mathbf{q_h}$  is the list of  $q_{h\gamma}$ , and "0" in subscript indicates the deformation at the global minimum of APES. The APES has two-dimensional continuous trough , suggesting the presence of SO(3) symmetry.

#### **Calculation details**

The reference structures for both  $C_{60}$  monoanion and monocation are chosen as the equilibrium structure of  $C_{60}$ . For DFT calculations, a triple-zeta basis set [6-311G(d)] is employed

few years that the actual situation of the ground electronic states of  $C_{60}^{n-}$  molecule (n = 1-5) has been established with accu-

rate vibronic coupling parameters, while in  $C_{60}^+$ , JT effect is one of the most involved cases because of the five-fold degenerate highest occupied molecular orbitals (HOMOs) of  $C_{60}$ , and has not been studied much.

On the other hand, to completely understand the real situation of JT effect on  $C_{60}$  anion, the LOMOs and HUMOs (even higher exited states) should be considered concomitantly, for which the studies of monocation  $C_{60}^+$  and monoanion in its first excited state  $C_{60}^-$ , within a same framework, are necessary.

**Objective**: Investigation of Jahn-Teller effect in  $C_{60}$  monocation  $C_{60}^+$  and monoanion in its firt extied state  $C_{60}^-$ .

## **Jahn-Teller effect analysis**

#### **Jahn-Teller Hamiltonian**

 $C_{60}^+$ : The highest occupied molecular orbitals (HOMOs) of  $C_{60}$  with  $I_h$  symmetry are characterized by five-fold degenerate  $h_u$  irreducible representation (as shown in Figure. 1). According to the selection rule, these orbitals linearly couple to the mass-weighted normal vibrational modes involved in the symmetric product of the  $h_u$  representation:  $[h_u \otimes h_u] = a_g \oplus g_g \oplus 2h_g$ . The  $H \otimes (a \oplus g \oplus 2h)$  JT Hamiltonian for  $C_{60}^+$  is expressed as

 $H = H_0 + H_{\rm JT},$ 

in Gaussian 16. Hybrid functional, B3LYP is used while the non-local interaction correction is added by CAM-B3LYP functionals.

**Influence of non-local interaction correction**: The agreement between vibronic coupling constants calculated with CAM-B3LYP and that from experiments[2] is better than that with B3LYP.

Taking the largest vibronic coupling constant, corresponding to  $h_{g7}$  mode, as an example, the values calculated with B3LYP and CAM-B3LYP are 13.9 and 19.5 meV, while it is about 19.6 meV from experimental data. Besides, CAM-B3LYP improved the total static JT stabilization energy from 50.3 meV (with B3LYP) to 59.3 meV, with the value about 60.0 meV from experiment. All these

**Table 1:** Contributions to ground vibronic energy  $(E_{total})$  of NLUMOs and LUMOs of  $C_{60}^-$  with B3LYP and CAM-B3LYP, respectively.  $E_{static}$ , and  $E_{dynamic}$  represent static JT and dynamic JT stabilization energies.

| Orbital |           | E <sub>total</sub> | Estatic | Edynamic |
|---------|-----------|--------------------|---------|----------|
| NLUMOs  | B3LYP     | -113.8             | -65.6   | -48.2    |
|         | CAM-B3LYP | -136.1             | -81.7   | -54.4    |
| LUMOs   | B3LYP     | -96.5              | -50.3   | -46.2    |
|         | CAM-B3LYP | -111.8             | -59.3   | -52.5    |

facts indicate the success of CAM-B3LYP for prediction of fullerene properties.

#### Results

(1)

Contributions to total ground vibronic energy ( $E_{total}$ ) from static JT stabilization energy ( $E_{static}$ ) and dynamic one

**Table 2:** Jahn-Teller stabilization energies of  $C_{60}^+$  (meV) for  $D_{5d}$  and  $D_{3d}$  minima of the APES, re-

$$H_{0} = \frac{1}{2} \left( p_{a}^{2} + \omega_{a}^{2} q_{a}^{2} \right) + V_{a} q_{a} + \sum_{\gamma=a,x,y,z} \frac{1}{2} \left( p_{g\gamma}^{2} + \omega_{g}^{2} q_{g\gamma}^{2} \right) + \sum_{\gamma=\theta,\epsilon,\xi,\eta,\zeta} \frac{1}{2} \left( p_{h\gamma}^{2} + \omega_{h}^{2} q_{h\gamma}^{2} \right),$$
  
$$H_{\text{JT}} = V_{g} \sum_{\gamma=a,x,y,z} \hat{C}_{g\gamma} q_{g\gamma} + \frac{\sqrt{5} V_{1h}}{2} \sum_{\gamma=\theta,\epsilon,\xi,\eta,\zeta} \hat{C}_{1h\gamma} q_{1h\gamma} + \frac{\sqrt{5} V_{2h}}{2} \sum_{\gamma=\theta,\epsilon,\xi,\eta,\zeta} \hat{C}_{2h\gamma} q_{2h\gamma}$$

where  $\omega_{\Gamma}$  ( $\Gamma = a_g, g_g, h_g$ ) are vibration frequencies,  $q_{\Gamma}$  are mass-weighted normal coordinates,  $V_{\Gamma}$  is vibronic coupling parameter for  $\Gamma$  mode, and  $\hat{C}_{\Gamma\gamma}$  ( $\gamma = a, x, y, z, \theta, \epsilon, \xi, \eta, \zeta$ ) are the Clebsch-Gordan coefficients, which are taken from Ref. [1].

First excited states of  $C_{60}^-$ : The  $t_{1g}$  NLUMOs of neutral  $C_{60}$  with  $I_h$  symmetry are triply degenerate and separated from other orbitals. According to selection rule, these  $t_{1g}$  orbitals couple to totally symmetric  $a_g$  and five-fold degenerate  $h_g$  normal modes as in the case of  $t_{1u}$  LUMOs  $[t_{1g} \otimes t_{1g}] = a_g \oplus h_g$ . Therefore, the linear vibronic Hamiltonian of  $C_{60}^-$  for first excited  $t_{1g}^1$  electronic configuration is given as in the case of  $t_{1u}^1$ :

$$H = H_0 + H_{JT} H_0 = \frac{1}{2} \left( p_a^2 + \omega_a^2 q_a^2 \right) + V_a q_a,$$

$$H_{JT} = \sum_{\gamma = \theta, \epsilon, \xi, \eta, \zeta} \frac{1}{2} \left( p_{h\gamma}^2 + \omega_h^2 q_{h\gamma}^2 \right) + V_h \begin{pmatrix} \frac{1}{2} q_{h\theta} - \frac{\sqrt{3}}{2} q_{h\epsilon} & \frac{\sqrt{3}}{2} q_{h\zeta} & \frac{\sqrt{3}}{2} q_{h\eta} \\ \frac{\sqrt{3}}{2} q_{h\zeta} & \frac{1}{2} q_{h\theta} + \frac{\sqrt{3}}{2} q_{h\epsilon} & \frac{\sqrt{3}}{2} q_{h\xi} \\ \frac{\sqrt{3}}{2} q_{h\eta} & \frac{\sqrt{3}}{2} q_{h\xi} & -q_{h\theta} \end{pmatrix}.$$
(2)

Here,  $q_{\Gamma\gamma}$  and  $p_{\Gamma\gamma}$  ( $\gamma = \theta, \epsilon, \xi, \eta, \zeta$  for  $\Gamma = h$ ) are mass-weighted normal coordinates and conjugate momenta, respectively,  $\omega_{\Gamma}$  is frequency, and  $V_{\Gamma}$  vibronic coupling parameters.

#### JT energy and the lowest adiabatic potential energy surface (APES)

**JT energy**: The JT energy is defined as  $E_{n\Gamma}^{JT} = -\frac{V_{n\Gamma}^2}{2\omega_{n\Gamma}^2}$ . To make the analysis of both  $C_{60}^+$  and

(E<sub>dynamic</sub>) are summarized in Table 1 [7]. JT stabilization energies in this work, as well as those from previous studies, are shown in Table 2 [8], from which we could see that CAM-B3LYP could enhance JT stabilization energies for D<sub>5d</sub> and D<sub>3d</sub> minima by 17% and 30% respectively compared to that with B3LYP. And JT stabilization energies obtained with both B3LYP and CAM-B3LYP are larger than those from LDA or PBE-related functionals.

#### spectively.

| Functional   | Method | $D_{5d}$ | $D_{3d}$ | Ref     |
|--------------|--------|----------|----------|---------|
| B3LYP        | (I)    | 110      | 30       | Present |
| CAM-B3LYP    | (I)    | 129      | 39       | Present |
| LDA          | (I)    | 69       | 22       | [3]     |
| <b>B3LYP</b> | (II)   | 121      | -        | [4]     |
| LDA          | (III)  | 74       | 27       | [5]     |
| OPBE         | (III)  | 74       | 28       | [5]     |
| B3LYP        | (III)  | 80       | 32       | [5]     |
| PBE          | (III)  | 74       | 28       | [6]     |
| LDA          | (IV)   | 72       | 20       | [5]     |
| OPBE         | (IV)   | 74       | 21       | [5]     |
| <b>B3LYP</b> | (IV)   | 94       | 25       | [5]     |

## Conclusions

- 1. Non-local interaction correction is important for the calculation of vibronic coupling constant for  $C_{60}$ ;
- 2. In  $C_{60}^-$ , the results for  $t_{1g}$  configuration showed stronger dynamic JT stabilization than those for  $t_{1u}$  configuration by about 18% and 22% for B3LYP and CAM-B3LYP, respectively, indicating the importance of JT effect in excited states;
- 3. In  $C_{60}^+$ , JT structure at the minima of APES is confirmed to be  $D_{5d}$ ;
- 4. Static JT stabilization energies in  $C_{60}^+$  are about two times larger than that in  $C_{60}^-$ .

 $C_{60}^-$  consistent, a coefficient  $\sqrt{5}/2$  is multiplied to vibronic couplings terms of  $h_g$  modes so that JT energy becomes:  $E_g^{JT} = -\frac{V_g^2}{2\omega_g^2}$  and  $E_{nh}^{JT} = -\frac{V_{nh}^2}{2\omega_h^2}$ , (n = 1, 2), while for  $C_{60}^-$ , the JT energy express as:  $\frac{V_a^2}{2\omega_z^2}$ , and  $\frac{V_h^2}{2\omega_z^2}$ .

**APES of C**<sup>+</sup><sub>60</sub>: Vibronic coupling lifts degeneracy with the deformation keeping one of the highest subgroup symmetries, resulting in six  $D_{5d}$  and ten  $D_{3d}$  minima, as there are six  $C_5$  and ten  $C_3$  axes in C<sub>60</sub>. The deformations for  $D_{5d}$  and  $D_{3d}$  minima are expressed by  $\mathbf{q}_{h_g}^{D_{5d}} = q_{h_g} \left(\frac{\phi^2}{2\sqrt{5}}, \frac{\phi^{-1}}{2}\sqrt{\frac{3}{5}}, 0, \sqrt{\frac{3}{5}}, 0\right), \mathbf{q}_{g_g}^{D_{5d}} = q_{g_g} (0, 0, 0, 0), \text{ and } \mathbf{q}_{h_g}^{D_{3d}} =$  $q_{h_g} \left(-\frac{\phi^{-1}}{2}, \frac{\phi^2}{2\sqrt{3}}, 0, \frac{1}{\sqrt{3}}, 0\right), \mathbf{q}_{g_g}^{D_{3d}} = q_{g_g} \left(\frac{1}{\sqrt{6}}, 0, -\sqrt{\frac{5}{6}}, 0\right).$  respectively[1]. The lowest potential energy are

 $U^{D_{5d}} = \frac{1}{2}\omega_h^2 q_h^2 + V_{1h}q_h, U^{D_{3d}} = \frac{1}{2}\omega_g^2 q_g^2 + \frac{1}{2}\omega_h^2 q_h^2 + \frac{1}{3}\left(2V_g q_g + \sqrt{5}V_{2h}q_h\right), \tag{4}$ 

for  $D_{5d}$  and  $D_{3d}$  deformations, respectively. These minima energies could be expressed in terms of JT stabilization energies as  $E_{JT}^{D_{5d}} = -E_{1h}^{JT}$ ,  $E_{JT}^{D_{3d}} = -\frac{1}{9} \left( 4E_g^{JT} + 5E_{2h}^{JT} \right)$ . **APES of C**<sup>-</sup><sub>60</sub>: The model Hamiltonian, and hence the formulae, for the ground electronic

configuration and the first excited configuration have the same structure. The depth of the

## References

- [1] D. Liu, Y. Niwa, N. Iwahara, T. Sato, and L. F. Chibotaru, Phys. Rev. B 98, 035402 (2018).
- [2] N. Iwahara, T. Sato, K. Tanaka, and L. F. Chibotaru, Phys. Rev. B 82, 245409 (2010).
  [3] N. Manini, A. D. Corso, M. Fabrizio, and E. Tosatti, Philosophical Magazine B 81, 793 (2001).
- [4] A. O. Lykhin, S. Ahmadvand, and S. A. Varganov, The Journal of Physical Chemistry Letters **10**, 115 (2019).
- [5] H. Ramanantoanina, M. Zlatar, P. García-Fernández, C. Daul, and M. Gruden-Pavlović, Phys. Chem. Chem. Phys. **15**, 1252 (2013).
- [6] J. T. Muya, H. Ramanantoanina, C. Daul, M. T. Nguyen, G. Gopakumar, and A. Ceulemans, Phys. Chem. Chem. Phys. **15**, 2829 (2013).
- [7] Z. Huang and D. Liu, International Journal of Quantum Chemistry 120, e26148 (2020), https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.26148.
  [8] Z. Huang and D. Liu, Chemical Physics Letters 754, 137698 (2020).