The Jahn-Teller and pseudo-Jahn-Teller effects in propyne radical cation

Arun Kumar Kanakati, Vadala Jhansi Rani and S. Mahapatra

School of Chemistry University of Hyderabad India

May 15, 2023

Arun Kumar Kanakati (UoH, India)

JTE Symposium@York

May 15, 2023 1 / 14

イロト イヨト イヨト イヨト

The Jahn-Teller theorem

- $\bullet\,$ "... stability and degeneracy are not possible simultaneously unless the molecule is a linear one ..." 1
- Structural aspects, global minimum of (JT or pseudo-JT) distorted potential energy surfaces²

- Break-down of the Born-Oppenheimer approximation
- Cls are crucial for signaling the ultrafast decay of excited molecular states
- Nonadiabtic situation

Schematic PES

イロト イポト イヨト イヨ

¹H. A. Jahn, E. Teller, and F. G. Donnan, Proc. Roy. Soc. A **161**, 220 (1937).

²I.B. Bersuker, The Jahn-Teller effect, Springer series in Chem. Phys. 2009.

The Jahn-Teller theorem

Types of degeneracies

- Conical intersections : JT, PJT & accidental degeracies
- Glancing interactions : RT

Conical intersections

Glancing interactions

- Group theory : Symmetry selection rule: $[\Gamma^2_{\it el}] \supset \Gamma_{\it vib}$
- Three representative cases :

Linear molecules	$[E_k^2] = \sigma + \delta$	no JTE
Tetragonal point groups	$[E^2] = a_1 + b_1 + b_2$	E⊗b JTE
Trigonal point groups	$[E^2] = a_1 + e$	E⊗e JTE

Motivation:

- **C**₃**H**₄: Allene (H₂CCCH₂, *D*_{2d}), Propyne (H₃CCCH, *C*_{3v}), and Cyclopropene (*C*_{2v}) are three stable isomers.
- Allene and Propyne are important intermediates in cumbustion and astrochemistry, and they are cumulene series with odd number of carbon atoms.
- Allene: $E \otimes b$ JTE and $(E \otimes b) + E$ PJTE
- Propyne: E \otimes e JTE and (E \otimes e)+A₁ PJTE

イロト イポト イヨト イヨ

Objectives of our work

- A detailed investigation of multi-mode JT and PJT effects in the first three, $\tilde{X}({}^{2}E)$, $\tilde{A}({}^{2}E)$, and $\tilde{B}({}^{2}A_{1})$ electronic states of H₃CCCH⁺⁺
- Construct the vibronic model Hamiltonian using the standard vbronic coupling theory
- Extensive ab initio quantum chemistry calculations
- JT, PJT and spin-orbit coupling effects in the nuclear dynamics

Electronic structure:

- Symmetry point group : $C_{3\nu}$
- Opt/Freq : MP2/aug-cc-pVDZ, G09
- $\Gamma_{vib} = 5a_1 + 5e$
- The symmetrized direct product of E representations in the C_{3v} point group yields

$$(E)^2 = a_1 + e$$
$$E \otimes A_1 = e$$

Propyne equilibrium geometry

イロト イポト イヨト イヨト

• The orbital configuration of propyne (H₃CCCH) in it's electronic ground state is $\widetilde{X}({}^{1}A_{1}) = (\operatorname{core})(6a_{1})^{2}(7a_{1})^{2}(1e)^{4}(2e)^{4}$

• Electronic configuration of first three low-lying electronic states of H₃CCCH^{.+}is

$$\begin{aligned} \widetilde{X}(^{2}E) &= \dots (6a_{1})^{2}(7a_{1})^{2}(1e)^{4}(2e)^{3} \\ \widetilde{A}(^{2}E) &= \dots (6a_{1})^{2}(7a_{1})^{2}(1e)^{3}(2e)^{4} \\ \widetilde{B}(^{2}A_{1}) &= \dots (6a_{1})^{2}(7a_{1})^{1}(1e)^{4}(2e)^{4} \end{aligned}$$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Vertical ionization energies

States	$\widetilde{X}(^{2}E)$	$\widetilde{A}(^{2}E)$	$\widetilde{B}(^{2}A_{1})$	$\widetilde{C}^2 A_1$	
	10.23	15.03	15.30	17.78	OVGF
VIEs	10.40	15.09	15.31	17.68	EOMIP-CCSD
	10.28	15.40	15.75	18.29	CASSCF-MRC
	10.37	14.70	15.50/15.80	17.49	Expt. ¹
	10.37	14.4	15.13	17.2	Expt. ²
	10.37	14.6	15.3/15.5	17.4	Expt. ³
	10.37	13.69	15.2	17.2	Expt. ⁴
	10.36	13.69/14.70/15.30	15.8	17.49	Expt. ⁵

Arun Kumar Kanakati (UoH. India)

JTE Symposium@York

May 15, 2023

イロト イポト イヨト イヨ

¹M. H. Palmer, C. C. Ballard, and I. C. Walker, Chem. Phys. **249**, 129 (1999).

²C. Baker and D. W. Turner, Pro. R. Soc. London. Ser. A 308, 19 (1968).

 $^{^{3}}$ W. Ensslin, H. Bock, and G. Becker, J. Am. Chem. Soc. $96,\,2757$ (1974).

⁴D. Frost, F. Herring, C. McDowell, and I. Stenhouse, Chem. Phys. Lett. 4, 533 (1970).

⁵G. H. Ho, M. S. Lin, Y. L. Wang, and T. W. Chang, J. Chem. Phys. **109**, 5868 (1998).

^{6 / 14}

Potential energy surfaces

< E

- E_{JT} $(\tilde{X}(^{2}E))=0.02 \text{ eV} (\sim 160 \text{ cm}^{-1}) \text{ and Expt.}^{a}$, $\sim 117 \text{ cm}^{-1}$
- E_{JT} ($\tilde{A}(^{2}E)$)= 1.14 eV (~11,372 cm⁻¹)
- Spin-orbit (SO) coupling of the $\tilde{\chi}(^2E)$ state \sim -28.60 cm⁻¹ (EOMIP-CCSD) and \sim -28.83 cm⁻¹ (CASSCF-MRCI), and Marquez *et al.*^a reported \sim -28 cm⁻¹)
- ^a D. R. Yarkony et al., J. Phys. Chem. A 117, 12002 (2013).

Vibronic coupling model Hamiltonian

 $\mathcal{H} = (\mathcal{T}_N + \mathcal{V}_0)\mathbf{1_5} + \Delta \mathcal{H}$

diagonal:

$$\begin{split} u_{j}^{x/y} &= E_{j}^{0} + \sum_{i \in a_{1}} \kappa_{i}^{j} Q_{i} + \frac{1}{2!} \sum_{i \in a_{1}} \gamma_{i}^{j} Q_{i}^{2} + \frac{1}{3!} \sum_{i \in a_{1}} \sigma_{i}^{j} Q_{i}^{3} + \frac{1}{4!} \sum_{i \in a_{1}} \delta_{i}^{j} Q_{i}^{4} \\ &+ \frac{1}{2!} \sum_{i \in e} \gamma_{i}^{j} \left(Q_{ix}^{2} + Q_{iy}^{2} \right) + \frac{1}{3!} \sum_{i \in e} \sigma_{i}^{j} \left(2Q_{ix}^{3} - 6Q_{ix}Q_{iy}^{2} \right) + \frac{1}{4!} \sum_{i \in e} \delta_{i}^{j} \left(Q_{ix}^{4} + 2Q_{ix}^{2}Q_{iy}^{2} + Q_{iy}^{4} \right) \\ &+ \frac{1}{5!} \sum_{i \in e} \rho_{i}^{j} \left(2Q_{ix}^{5} - 4Q_{ix}^{3}Q_{iy}^{2} - 6Q_{ix}Q_{iy}^{4} \right) \pm \sum_{i \in e} \lambda_{i}^{j} Q_{ix} \pm \frac{1}{2!} \sum_{i \in e} \eta_{i}^{j} \left(Q_{ix}^{2} - Q_{iy}^{2} \right) \\ &\pm \frac{1}{3!} \sum_{i \in e} \sigma_{i}^{\prime j} \left(Q_{ix}^{3} + Q_{ix}Q_{iy}^{2} \right) \pm \frac{1}{4!} \sum_{i \in e} \delta_{i}^{\prime j} (Q_{ix}^{4} - 6Q_{ix}^{2}Q_{iy}^{2} + Q_{iy}^{4}) \pm \frac{1}{4!} \sum_{i \in e} \delta_{i}^{\prime \prime j} (Q_{ix}^{4} - Q_{iy}^{4}) \\ &\pm \frac{1}{5!} \sum_{i \in e} \rho_{i}^{\prime j} \left(Q_{ix}^{5} - 10Q_{ix}^{3}Q_{iy}^{2} + 5Q_{ix}Q_{iy}^{4} \right) \pm \frac{1}{5!} \sum_{i \in e} \rho_{i}^{\prime \prime j} \left(Q_{ix}^{5} + 2Q_{ix}^{3}Q_{iy}^{2} + Q_{ix}Q_{iy}^{4} \right) :j \in \tilde{X}, \tilde{X} \end{split}$$

Arun Kumar Kanakati (UoH, India)

<ロ> <回> <回> <回> <回> <回> < => < => < =>

Vibronic coupling model Hamiltonian

$$u_{j} = E_{j}^{0} + \sum_{i \in a_{1}} \kappa_{i}^{j} Q_{i} + \frac{1}{2!} \sum_{i \in a_{1}} \gamma_{i}^{j} Q_{i}^{2} + \frac{1}{3!} \sum_{i \in a_{1}} \sigma_{i}^{j} Q_{i}^{3} + \frac{1}{2!} \sum_{i \in e} \gamma_{i}^{j} \left(Q_{ix}^{2} + Q_{iy}^{2}\right) + \frac{1}{4!} \sum_{i \in e} \delta_{i}^{j} \left(Q_{ix}^{4} + 2Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + 2Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in e} \delta_{i}^{j} \left(Q_{ix}^{4} + 2Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + 2Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + 2Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{ix}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{ix}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{ix}^{2} + Q_{iy}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{ix}^{2} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} Q_{ix}^{2} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{2} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{4} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{4} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1}} \delta_{i}^{j} \left(Q_{ix}^{4} + Q_{ix}^{4}\right) + \frac{1}{2!} \sum_{i \in a_{1$$

off-diagonal:

$$\begin{split} u_{j}^{XY} &= \sum_{i \in e} \lambda_{i}^{j} Q_{iy} - \frac{1}{2!} \sum_{i \in e} 2\eta_{i}^{-j} Q_{ix} Q_{iy} + \frac{1}{3!} \sum_{i \in e} \sigma_{i}^{\prime j} \left(Q_{ix}^{2} Q_{iy} + Q_{iy}^{3} \right) \\ &+ \frac{1}{4!} \sum_{i \in e} \delta_{i}^{\prime j} \left(4Q_{ix}^{3} Q_{iy} - 4Q_{ix} Q_{iy}^{3} \right) + \frac{1}{4!} \sum_{i \in e} \delta_{i}^{\prime \prime j} \left(-2Q_{ix}^{3} Q_{iy} - 2Q_{ix} Q_{iy}^{3} \right) \\ &+ \frac{1}{5!} \sum_{i \in e} \rho_{ij}^{\prime j} \left(-5Q_{ix}^{4} Q_{iy} + 10Q_{ix}^{2} Q_{iy}^{3} - Q_{iy}^{5} \right) + \frac{1}{5!} \sum_{i \in e} \rho_{i'}^{\prime \prime j} \left(Q_{ix}^{4} Q_{iy} + 2Q_{ix}^{2} Q_{iy}^{3} + Q_{iy}^{5} \right) : j \in \tilde{X}, \tilde{A} \end{split}$$

$$\begin{split} u_{\widetilde{A}\widetilde{B}}^{X} &= \sum_{i \in e} \lambda_{i}^{\prime(1)} Q_{ix} + \frac{1}{2!} \sum_{i \in e} \lambda_{i}^{\prime(2)} \left(Q_{ix}^{2} - Q_{iy}^{2} \right) + \frac{1}{3!} \sum_{i \in e} \lambda_{i}^{\prime(3)} \left(Q_{ix}^{3} + Q_{ix} Q_{iy}^{2} \right) \\ &+ \frac{1}{4!} \sum_{i \in e} \lambda_{i}^{\prime(4)} (Q_{ix}^{4} - 6Q_{ix}^{2} Q_{iy}^{2} + Q_{iy}^{4}) + \frac{1}{4!} \sum_{i \in e} \lambda_{i}^{\prime(4')} (Q_{ix}^{4} - Q_{iy}^{4}) \\ &+ \frac{1}{5!} \sum_{i \in e} \lambda_{i}^{\prime(5)} \left(Q_{ix}^{5} - 10Q_{ix}^{3} Q_{iy}^{2} + 5Q_{ix} Q_{iy}^{4} \right) + \frac{1}{5!} \sum_{i \in e} \lambda_{i}^{\prime(5')} \left(Q_{ix}^{5} + 2Q_{ix}^{3} Q_{iy}^{2} + Q_{ix} Q_{iy}^{4} \right) , \end{split}$$

$$\begin{split} u_{\widetilde{AB}}^{y} &= \sum_{i \in e} \lambda_{i}^{\prime(1)} Q_{iy} - \frac{1}{2!} \sum_{i \in e} 2\lambda_{i}^{\prime(2)} Q_{ix} Q_{iy} + \frac{1}{3!} \sum_{i \in e} \lambda_{i}^{\prime(3)} \left(Q_{ix}^{2} Q_{iy} + Q_{iy}^{3} \right) \\ &+ \frac{1}{4!} \sum_{i \in e} \lambda_{i}^{\prime(4)} \left(4Q_{ix}^{3} Q_{iy} - 4Q_{ix} Q_{iy}^{3} \right) + \frac{1}{4!} \sum_{i \in e} \lambda_{i}^{\prime(4')} \left(-2Q_{ix}^{3} Q_{iy} - 2Q_{ix} Q_{iy}^{3} \right) \\ &+ \frac{1}{5!} \sum_{i \in e} \lambda_{i}^{\prime(5)} \left(-5Q_{ix}^{4} Q_{iy} + 10Q_{ix}^{2} Q_{iy}^{3} - Q_{iy}^{5} \right) + \frac{1}{5!} \sum_{i \in e} \lambda_{i}^{\prime(5')} \left(Q_{ix}^{4} Q_{iy} + 2Q_{ix}^{2} Q_{iy}^{3} + Q_{iy}^{5} \right) . \end{split}$$

Arun Kumar Kanakati (UoH, India)

Vibrational energy level spectrum:

¹C. Baker and D. W. Turner, Pro. R. Soc. London. Ser. A **308**, 19 (1968).

Arun Kumar Kanakati (UoH, India)

JTE Symposium@York

May 15, 2023

イロト イロト イヨト イヨト

10 / 14

Energy eigenvalues (EOMIP-CCSD)

		$\tilde{X}(^{2}E$)			$\tilde{A}(^{2}E)$		$\tilde{B}(^2A_1)$
Energy	Ref. [1]	Ref. [2]	Assignment	Energy	Ref. [1]	Assignment	Energy	Assignment
0			00	0		00	0	00
876	940	930 ± 50	ν_{50}^{-1}	1024		ν_{50}^{-1}	917	ν_{50}^{-1}
1328			ν_{40}	1304	1290	ν_{40}	1497	ν_{40}
1752			ν_{50}^{2}	2048		ν_{50}^{2}	1835	ν_{50}^{2}
2169	1940	2000 ± 50	ν_{30}^{I}	2145		ν_{30}^{I}	2018	ν_{30}^{I}
2204			$\nu_{40}^{1} + \nu_{50}^{1}$	2328		$\nu_{40}^{1} + \nu_{50}^{1}$	2414	$\nu_{40}^{1+\nu_{50}}$
2628			ν_{50}^{3}	2602		ν_{40}^{2}	2752	ν_{50}^{3}
2655			ν_{40}^{2}	3073		ν_{50}^{3}	2936	$\nu_{30}^{1} + \nu_{50}^{1}$
3046			$\nu_{30}^{1} + \nu_{50}^{1}$	3169		$\nu_{30}^{1} + \nu_{50}^{1}$	2991	ν_{40}^{2}
3067			ν_{20}^{1}	3178		ν_{20}^{1}	3017	ν_{20}^{1}
3080			$\nu_{40}^{1} + \nu_{50}^{2}$	3353		$\nu_{40}^{1} + \nu_{50}^{2}$	3332	$\nu_{40}^{1} + \nu_{50}^{2}$

¹C. Baker and D. W. Turner, Pro. R. Soc. London. Ser. A **308**, 19 (1968).

 2 U. Jacovella and F. Merkt, Mol. Phys. 116, 302 (2018).

Arun Kumar Kanakati (UoH, India)

JTE Symposium@York

イロト イヨト イヨト イヨ

Coupled state results

Photoelectron spectrum of propyne

Internal conversion dynamics

 $^{1}\text{C}.$ Baker and D. W. Turner, Pro. R. Soc. London. Ser. A 308, 19 (1968).

14 45 0000 40 /4

Arun Kumar Kanakati (UoH, India)

JTE Symposium@York

May 15, 2023 12 / 14

Conclusions:

- It is found that the $\widetilde{X}({}^{2}E)$ electronic state is energetically well separated from the $\widetilde{A}({}^{2}E)$ and $\widetilde{B}({}^{2}A_{1})$ states at the Franck-Condon geometry.
- Similar results were obtained for the allene radical cation.
- JT effect in the $\widetilde{A}({}^{2}E)$ state is stronger than the $\widetilde{X}({}^{2}E)$ state.
- The PJT coupling between the $\tilde{A}({}^{2}E)-\tilde{B}({}^{2}A_{1})$ electronic states is weak in propyne. But it is stronger in the allene radical cation.
- In case of propyne, the complex band structure of the $\tilde{A}(^{2}E)$ and $\tilde{B}(^{2}A_{1})$ states arises solely from their energetic proximity.
- This is in contrast to the effects in the vibronic band structure of $\widetilde{A}({}^{2}E)-\widetilde{B}({}^{2}B_{2})$ electronic states of isomeric allene radical cation.

Acknowledgement:

- Prof. Susanta Mahapatra
- Labmates, friends and family members
- UoH and CSIR
- 25th International conference on JT Effect organizers

イロト イポト イヨト イヨト

Thank You

・ロト ・回ト ・ヨト ・ヨト