Beyond Born-Oppenheimer Constructed Diabatic Potential Energy Surfaces for $\mathrm{HeH}_{2}{ }^{+}$

Koushik Naskar ${ }^{1}$, Satyam Ravi ${ }^{1,2}$,Satrajit Adhikari1,*, Michael Baer ${ }^{3}$, and Narayanasami Sathyamurthy ${ }^{4}$

${ }^{1}$ School of Chemical Sciences, Indian Association for the Cultivation of Science 2A \& 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
${ }^{2}$ School of Advanced Sciences and Languages VIT Bhopal University, Bhopal, 466114, India
${ }^{3}$ The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
${ }^{4}$ Indian Institute of Science Education and Research Mohali, SAS Nagar, Manauli 140306, India
*E-mail: pcsa@iacs.res.in

Beyond Born-Oppenheimer (BBO) Theory

Molecular Schrodinger Equation:
Molecular Hamiltonian:

Total molecular wave function:

Electronic Schrodinger Equation:

Schrodinger Equation in Adiabatic Representation:

Non-Adiabatic Coupling Terms (NACTs)

NACTs from Hellmann-Feynman Theorem:
Cauchy's Residue Theorem

$$
\int_{0}^{2 \pi} \tau_{i j}^{\phi}(\phi) d \phi=n \pi
$$

$$
\begin{aligned}
& \hat{H}(e, n)|\Psi(e, n)\rangle=E|\Psi(e, n)\rangle \\
& \hat{H}(e, n)=\hat{T}_{n}(n)+\hat{H}_{e}(e ; n) \\
& \Psi(e, n)=\sum_{i=1}^{N} \psi_{i}(n) \xi_{i}(e ; n) \\
& \hat{H}_{e}(e ; n) \xi_{i}(e ; n)=u_{i}(n) \xi_{i}(e ; n) \\
& {\left[-\frac{1}{2}(\vec{\nabla}+\vec{\tau})^{2}+(\boldsymbol{u}-\boldsymbol{E})\right] \boldsymbol{\psi}=0} \\
& \vec{\tau}_{i j}=\left\langle\xi_{i}\right| \vec{\nabla}\left|\xi_{j}\right\rangle \\
& \vec{\tau}_{i j}=\frac{\left\langle\xi_{i}\right| \vec{\nabla}_{n} \hat{H}_{e}\left|\xi_{j}\right\rangle}{\left(u_{j}-u_{i}\right)}
\end{aligned}
$$

Adiabatic to Diabatic Transformation (ADT):

Transforming the nuclear wave function

$$
\psi\left(\boldsymbol{s}_{n}\right)=\boldsymbol{A}\left(\boldsymbol{s}_{n}\right) \phi^{d}\left(\boldsymbol{s}_{n}\right)
$$

The ADT matrix, \boldsymbol{A} satisfies the ADT condition

$$
\vec{\nabla}_{\boldsymbol{n}} \boldsymbol{A}+\vec{\tau} \boldsymbol{A}=\mathbf{0}
$$

Schrodinger Equation in diabatic representation,
Diabatic Potential Energy (PE) matrix,

$$
\begin{aligned}
& {\left[-\frac{\mathbf{1}}{\mathbf{2}} \nabla^{2}+(W-E)\right] \phi^{d}=\mathbf{0}} \\
& W=A^{\dagger} u A
\end{aligned}
$$

The adiabatic-to-diabatic transformation matrix, \boldsymbol{A} is orthogonal
$>\boldsymbol{A}$ matrix for a 2 state problem

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \Theta_{12} & \sin \Theta_{12} \\
-\sin \Theta_{12} & \cos \Theta_{12}
\end{array}\right) \quad \Theta_{12} \text { is the ADT angle } \\
& \boldsymbol{A}\left(\Theta_{12}, \Theta_{13}, \Theta_{23}\right)=\boldsymbol{A}_{12}\left(\Theta_{12}\right) \cdot \boldsymbol{A}_{13}\left(\Theta_{13}\right) \cdot \boldsymbol{A}_{23}\left(\Theta_{23}\right)
\end{aligned}
$$

$>$ For three state problem, three Euler like ADT angles are required to

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
\cos \Theta_{12} & \sin \Theta_{12} & \mathbf{0} \\
-\sin \Theta_{12} & \cos \Theta_{12} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{1}
\end{array}\right) \cdot\left(\begin{array}{ccc}
\cos \Theta_{13} & \mathbf{0} & \sin \Theta_{13} \\
\mathbf{0} & \mathbf{1} & \mathbf{0} \\
-\sin \Theta_{13} & \mathbf{0} & \cos \Theta_{13}
\end{array}\right) \cdot\left(\begin{array}{ccc}
\mathbf{1} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \cos \Theta_{23} & \sin \Theta_{23} \\
\mathbf{0} & -\sin \Theta_{23} & \cos \Theta_{23}
\end{array}\right)
$$

\square Features of Adiabatic to Diabatic Transformation:

$>$ For a N dimensional electronic manifold, the ADT matrix can be considered as a product of elementary rotation matrices constituted with mixing angles between any two electronic states for the N -state sub-Hilbert space (SHS).

$$
\mathrm{A}=P_{n}\left\{\mathrm{~A}^{12}\left(\Theta_{12}\right) \cdot \mathrm{A}^{13}\left(\Theta_{13}\right) \cdot \mathrm{A}^{23}\left(\Theta_{23}\right) \ldots \ldots . . \mathrm{A}^{N-1, N}\left(\Theta_{N-1, N}\right)\right\}, n=1, \ldots \Lambda!; \quad \Lambda={ }^{N} C_{2}=\frac{N(N-1)}{2}
$$

$>$ Elementary rotation matrices $A^{m n}$ are given by:

$$
\left[\mathrm{A}^{m n}\left(\Theta_{m n}\right)\right]_{i j}=\delta_{i j} ; \quad\{i, j\} \neq\{m, n\} .
$$

$$
\left[\mathrm{A}^{m n}\left(\Theta_{m n}\right)\right]_{m m}=\cos \Theta_{m n}=\left[\mathrm{A}^{m n}\left(\Theta_{m n}\right)\right]_{n n} ; \quad m \neq n
$$

$$
\mathrm{A}^{14}\left(\Theta_{14}\right)=\left(\begin{array}{cccc}
\cos \Theta_{14} & 0 & 0 & \sin \Theta_{14} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sin \Theta_{14} & 0 & 0 & \cos \Theta_{14}
\end{array}\right)
$$

$$
\left[\mathrm{A}^{m n}\left(\Theta_{m n}\right)\right]_{m n}=\sin \Theta_{m n}=-\left[\mathrm{A}^{m n}\left(\Theta_{m n}\right)\right]_{n m} ; \quad m \neq n
$$

$>$ Using the ADT condition we get Λ unique coupled differential equation in the form:

$$
\vec{\nabla}_{\boldsymbol{n}} \boldsymbol{A}+\vec{\tau} \boldsymbol{A}=0 \vec{\nabla}_{n} \Theta_{i j}=\sum_{m=1}^{\Lambda} c^{(m)} \vec{\tau}_{(m)}
$$

Application of BBO Theory for Scattering Processes: Ab - initio PESs, NACTs and Diabatic PESs of $\mathrm{HeH}_{2}{ }^{+}$system

* The ab-initio calculations on the four lowest singlet states of $\mathrm{HeH}_{2}^{+}\left(1^{1} \mathrm{~A}^{\prime}, 2^{1} \mathrm{~A}^{\prime}, 3^{1} \mathrm{~A}^{\prime}\right.$ and $\left.4^{1} \mathrm{~A}^{\prime}\right)$ are performed by MOLPRO - 2018 quantum chemistry package in hyperspherical coordinate as a function hyperangles (θ, φ) for fixed values of hyperradius (ρ)
* MCSCF calculation is performed with three (3) electrons distributed over eight (8) orbitals followed by MRCI calculation using cc- $\mathbf{p V Q Z}$ basis set.
$R_{1}=\frac{\rho}{\sqrt{2}} d_{3}\left[1+\sin \theta \cos \left(\varphi+\varepsilon_{3}\right)\right]^{1 / 2}$,
$R_{2}=\frac{\rho}{\sqrt{2}} d_{1}[1+\sin \theta \cos \varphi]^{1 / 2}$,
$R_{3}=\frac{\rho}{\sqrt{2}} d_{2}\left[1+\sin \theta \cos \left(\varphi-\varepsilon_{2}\right)\right]^{1 / 2}$.

$d_{i}=\sqrt{m_{i}\left(m_{j}+m_{k}\right) / \mu M} \quad \mu=\sqrt{m_{1} m_{2} m_{3} / M}$
$\varepsilon_{3}=2 \tan ^{-1}\left(m_{2} / \mu\right) \quad \varepsilon_{3}=2 \tan ^{-1}\left(m_{2} / \mu\right)$

1. B. R. Johnson, J. Chem. Phys 73, 5051, 1980

Adiabatic PESs of $\mathrm{HeH}_{2}{ }^{+}$system

$>$ Adiabatic ground electronic state of the $\mathrm{HeH}_{2}{ }^{+}$system in collinear geometry

Adiabatic PESs of $\mathrm{HeH}_{2}{ }^{+}$system

1. K. Naskar, S. Ravi, S. Adhikari, M. Baer and N. Sathyamurthy; J. Phys. Chem. A, 127, 3832 (2023)

BBO Theory: Locating the conical intersections

CI between ground and first excited state in $\mathrm{C}_{2 \mathrm{v}}$ configuration

1. K. Naskar, S. Ravi, S. Adhikari, M. Baer and N. Sathyamurthy; J. Phys. Chem. A, 127, 3832 (2023)

NACTs and ADT Angles of $\mathrm{HeH}_{2}{ }^{+}$system

1. K. Naskar, S. Ravi, S. Adhikari, M. Baer and N. Sathyamurthy; J. Phys. Chem. A, 127, 3832 (2023)

Diabatic PESs and couplings of $\mathrm{HeH}_{2}{ }^{+}$system

1. K. Naskar, S. Ravi, S. Adhikari, M. Baer and N. Sathyamurthy; J. Phys. Chem. A, 127, 3832 (2023)

Summary \& Future Plans

$>$ Ab-initio based adiabatic PESs and NACTs are calculated for lowest four states of $\mathrm{HeH}_{2}{ }^{+}$ system.
Conical intersection (CI) is located between the states in collinear as well as $\mathrm{C}_{2 \mathrm{v}}$ configurations is located and validated by integrating the NACTs along appropriately chosen contours where the resulting ADT angle reaches multiple integers of π.
$>$ ADT angles are determined by solving the ADT equations to construct the diabatic potential matrix for the $\mathrm{HeH}_{2}{ }^{+}$system which are smooth, single-valued, continuous, and symmetric.

Future Plans

$>$ Utilize the four state diabatic potential matrix to study the ground state proton transfer reaction $\mathrm{He}+\mathrm{H}_{2}{ }^{+} \rightarrow \mathrm{HeH}^{+}+\mathrm{H}$ as well as the excited state hydrogen transfer reaction $\mathrm{He}^{+}+\mathrm{H}_{2} \rightarrow \mathrm{HeH}^{+}+\mathrm{H}$

Acknowledgment

K.N. thanks CSIR, India [Grant No. 09/080(1068)/2018-EMR-I] for funding. SR thanks VIT Bhopal for the seed grant, Support for Excellence in Academic Research (SPEAR), (File No: VITB/SEEDGRANT/2022/08). S.A. acknowledges the SERB (Project No. CRG/2019/000793) for the research funding. S.A. also acknowledges IACS for the CRAY super-computing facility.

