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I Introduction ' i Experimental data J—
Transition metal ions with orbital degeneracy lead to the Jahn-Teller (JT) effect 0.001
manifestation in crystals. The research relevance is determined by the Results:
possibilities of practical application of transition metal ions in quantum optics, 0,000 ~ 1. In BaF2:Ni, there are no anomalies
spintronics, computer technology, solar cells and LEDs. If the ion is a Jahn —Teller | : | | | (visible signs of the Jahn-Teller effect).
center, the study of the ground state of JT-complexes will open an additional oo001d S e S ]
possibility to control the device in which these complexes are possible to use. < | | | 3 | 2. In BaF2:Cu, the peak in Im[Acyy/co)
o _ g 1 1 | | 1 and anomalies in Re[4c44/cy] are much
The present research is aimed at construction of the temperature dependence 0,002+ AN A M W A N less than in CaF,:Cu?* [1]. Therefore,
of relaxation time in fluorite crystals which provides the information about the _ Re[Ac,,/c,]: BaF,:Cu ‘ ‘ only a small amount of the dopants does
parameters of relaxation mechanisms. '0’003'_IFZT;[[AAZM//T:O]]:-BBZF;:-CAE substitute metal in cation positions in
( _ _ W 1 Im[Ac44/co]:. I BaF2:Cu, others have off-centre positions
i Crystal structure and local distortions y oo | e \which do not have the JT origin [3].
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Fig.3 — Temperature dependences of Real and Imaginary parts of the cas elastic modulus

Q r determined by T®(e + t,) problem with _ _ _ e
o 6 orthorhombic global minima of the (share wave propagating along [110] axis polarized along [001] axis) in the BaF2:Cu and
O Ba adiabatic potential energy surface [1] BaF2:Ni crystals at a/27=53 MHz. Acys = €c44(T) — cg, g = €44(Ty); Ty = 48K
fuz* ons |1 cubie environment are [ Temperature dependence of relaxation time J—
characterize y triple orpita

degeneracy. Adiabatic potential energy
surface Is defined by 5 symmetric
coordinates:

Evaluation of relaxation time doesn’t require concentration of the JT complexes and is
based on the modeling the JT- contribution in Imaginary part of elastic modulus using
fitting parameters and formula (2). Fitting parameters define three relaxation mechanisms:
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| _ activation: 7, = tgexp(=), tunneling: 7, = —, two-phonon: 7 = —, - =—+—+— (4)
| « trigonal: Q¢, @, Q¢ [2]. T BT BT 7 Ta Tt TR
% - ° Temperature dependence of relaxation time can be also determined using experimental
- — Vil © 7 data on the Imaginary part of elastic modulus using formula (5):
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Fig.1 - Fluorite structure of the 1 e U= T T TT + — T eI T (T | 1 (5)
cubic BaF2 crystal doped with Cu or © o w Im[c/T(T)] [ Im[c/7(T)]

Ni lons. The EU I(Ni) lons replaces ﬁ 0,0006 | | I Fig.4 — Temperature dependences of
Ba ion in the lattice site. It is 1 1 C amde i Ntion i :

- e - Fig.2 — Tetragonal e (blue) and trigonal t2 (red) ; ; the JT contrlbunon_ln the Imaglnqry part
surrounded by eight fluorine ions in : . : . . X e T (e Y 2 LI 5 of the cas4 elastic modulus in the
the corners of the cube. distortions. There is simultaneous interaction with both s ‘ 5 BaFsC y q )

tetragonal and trigonal displacements in case of the ; ; oo S . - ar2. U crystal:  re cuarve - 1S

T®(e + tz) prOblem 0’0004_ ””””””” ‘;Ln;?gog(g;/-z]ogo17*(x-19.5)2% expe”mental Curve Im[AC44(T)/C0]
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' - 2000034 f N e curve is model curve calculated by

. Acoustic eXperlment methOdOIOgy y E formula (2) using fitting parameters
_ _ . o . 0.0002 Jervooeee /o \> ] listed in Table 2.

The ultrasonic waves with specific polarization propagated along the specific : f f f f nsert in th aht _
crystallographic axis fully characterize the elastic moduli of the crystal (Table 1). f f 1 i s NSErt I the Upper Tight comer 15

000014 7 ——Imle, (Ml | N\C L evaluation of parameters in formula (5)

In an ultrasonic experiment, temperature dependences of the ultrasound velocity — IM[C4” (T)/Colmod| ‘ ‘ using the peak model in Imaginary part:
v and attenuation a (Real and Imaginary components of complex elastic 0.0000 . T T1=19.5 K;
modulus, respectively) are registered. 0 10 20 30 40 50 " Im[c/T(T,)/c,]T,=0.00963.

Temperature (K)
Ac Av A« " : . . : .
—=2-1—+ i (1) Table 2. — Fitting parameters of simulation with three relaxation mechanisms
Co Vo 0
_ : . : : JT = =4 192, sK3
JT-subsystem contribution to elastic moduli is determined as peak in the Crystal tmc(T1)/eolTs, K %:S | Vo, cm B sK B0 sk
Imaginary part and minimum in the Real part at T~T1. P
BaF2:Cu 0.00963 4-10 66 6.5-1077 6-107°
cJT , Re[c/T(T)] Ty 1 i Im[c/T(T)]T; wrt )
—_— l
Co Co T 1+ (w7)? Co T 1+ (w7)? CaF2:Cu2*[1] 0.562 310712 118 | 6.5-1077 2-1073
Re[c/"(T})] = —Im[c/"(T})] (3)

I.E>$per|mental determ.lnatlon Qf the dlstortlo_ns and symme_trlc proper.tles of global ] Fig5 — Temperature dependences of
minima a.nd saddle points (V\_/hlc:h are pqtentlal energy bgrrlers annellng passes o i relaxation time in the BaFz:Cu crystal. Dark
through) is based on relaxation anomalies appearance in specific elastic moduli ] / squares are experimental data, purple curve
(Table 1). 3 / is total relaxation time modeled by three

Operation of experimental setup is based on the frequency-variable high- = P / rela)l(oatllon mECha”'zmS' Thehblue SO(;L_'?‘re
frequency bridge. Ultrasound waves are generated and registered using S egd Symbol - corresponds  to - the  condition

. . . [ 1 7 P N S R S— T T (UT(Tl) - 1
piezoelectric transducers made of LINbOs. ] , -

Table 1. — Relation between ultrasonic wave propagation, cubic crystal elastic moduli : /l[ """ Zt 4[ COﬂClUSiOn J_
and JT-complex distortions teroer
1E-9 4 / experimental .

Ultrasonic wave Shear: k || [110] Longitudal: k || [110] Shear: k || [110] 5 B wr=l Parameters of relaxation
propagation polarization || [001] polarization || [110] 1 | i i | mechanisms determined in the
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LT (1K) comparison of the properties of the
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